

Interface Biologie Physique

Ziad El Bitar
Groupe ImaBio
Institut Pluridisciplinaire Hubert Curien
UMR 7178, UDS, CNRS-IN2P3

ziad.elbitar@iphc.cnrs.fr

Partie I:

- Imagerie par transmission:
 - TomoDensitoMétrie (TDM)
- Imagerie par Emission:
 - Tomographie d'Emission MonoPhotonique (TEMP)
- Algorithme de reconstruction d'images
- Outils de calcul :
 - Simulations Monte Carlo
 - Grilles de calcul
- Développements autour du TEMP

AMISSA: A Multimodality Imaging System for Small Animal

Anatomical Imaging System
Acquisition/reconstruction 20s→6 min
Spatial Resolution: 150→50 µm

Functional Imaging System
Spatial Resolution: 1 mm
Detection Efficiency: 0.014%

MPET

Functional Imaging System Under development

Spatial Resolution: 1mm Detection Efficiency: >15%

µTDM: présentation

Source X (Hamamatsu, L8601-01)

Anode W, μ foyer X (7μ m), 20-90 kV, 0 à 250 μ A, Ouverture 39°, Fonctionne en continu \rightarrow obturateur mécanique

Capteur (Hamamatsu, C7942)

 $120 \times 120 \text{ mm}^2$, CsI / photodiode $2400 \times 2400 \text{ pixels}$, pixel de $50 \mu \text{m}$ 470ms/projection (1, 4, 9 images/s)

Reconstruction:

Analytique: cluster de PCs / carte GPU

itératif: carte GPU

Cours in2p3, 12/2012, Aussois

D Brasse et al, Phys. Med. Biol., 2005

Imagerie par transmission: Computed Tomography 1/3

Imagerie par transmission: Computed Tomography 2/3

Imagerie par transmission: Computed Tomography 3/3

Illustration CT

Reconstruire un volume 3D à partir de ses projections

Rotation 0°

Rotation 90°

Rotation 180°

Rotation 270°

768 projections de 2048x2048 pixels (unsigned short int) : 6 Go Volume 3D de 384x512x720 voxels (float) : 540 Mo

volume reconstruit

coupe axiale z=410

coupe coronale y=219

coupe sagittale x=257

Etude de l'angiogénèse

Ligature de l'artère fémorale chez le rat Injection d'un produit de contraste

Travaux réalisés en collaboration avec la Faculté de Pharmacie de Strasbourg (N Etienne, A Walter)

Cours in2p3, 12/2012, Aussois

Cours in2p3, 12/2012, Aussois

Modèle murin du cancer du sein

Moins de tumeurs pour les souris ST3 +/+ mais taux de croissance supérieur

La respiration limite la détection dans la région pulmonaire Etude longitudinale: limiter la dose (48 mGy/acquisition)

Imagerie cérébrale : visualisation de calcifications

Imagerie ex-vivo

Effet du resveratrol sur la densité osseuse

Travaux réalisés en collaboration avec le DEPE C Habold, J. Bone Miner. Metab., 2010

Etude tumorale

Travaux réalisés en collaboration avec la Faculté de Pharmacie de Strasbourg

Cours in2p3, 12/2012, Aussols Valter et al, FASEB, 2010

Quantification du tissu adipeux

C Habold et al, Int. J. Obes., 2010

Imagerie par Emission

Radiotraceurs, marquage en imagerie par émission

Acte I

Traceur caractéristique d'une fonction métabolique ou physiologique

Acte II

Marquage de la molécule

radiotraceur

Acte III

Injection et étude de la répartition de la molécule, marguée, Aussois

Exemple du FDG

Cours in2p3, 12/2012, Aussois

Isotopes couramment utilisés

Isotope	Energie	Période
20010PO		1 01 10 40

Emetteurs y

Technétium 99n	n 140 keV <i>(89%)</i>	6,02 heures
Iode 123	27 (71%) 159 keV (83%)	13,2 heures
Thallium 201	71 keV <i>(47%)</i>	73 heures

Emetteurs B+

Oxygène 15	1738 keV	2,1 minutes
Carbone 11	960 keV	20,4 minutes
Fluor 18	634 keV	109,8 minutes
Brome 76	3980 keV	972 minutes

Techniques d'imagerie associées

Emetteurs y

Tomographie par émission monophotonique (TEMP) Emetteurs B+

Tomographie par émission de positons (TEP) (prochain cours)

Tomographie par Emission MonoPhotonique: TEMP

• Principe:

Injection du radiotraceur Emission isotrope 1ère étape: Sélection du rayonnement

Performances intrinsèques: efficacité de détection, résolution spatiale

 $R_i = 2.3 \text{ mm}$

µTEMP: présentation

Un module de détection

Matrice de Crystal PhotoMultiplicateur

Un Secteur de détection

Cours in2p3, 12/2012, Aussois

Collimateur sténopé

Tungstène

De type « Keel edge »

Ouverture de 0,5 mm

Facteur de zoom: 2,1

Matrice 8 x 8 de YAP:Ce

Crytur, Turnov, CZ

Taille d' un cristal: 2,3 x 2,3 x 28 mm³

Électronique compacte

µTEMP: analyse des données

µTEMP: performances intrinsèques

 $\overline{cell}/cluster \approx 7$

Résolution intrinsèque $R_i = 2,3 \text{ mm}$

Résolution image R = 1 mm (pinhole 0,5mm)

Efficacité de détection $E_{ff} = 92 \ cps/MBq$

Reconstruction d'images

La tomographie, c'est quoi?

• La **tomographie** est une technique d'imagerie très utilisée dans l'imagerie, ainsi qu'en géophysique et en astrophysique. Cette technique permet de reconstruire le volume d'un objet à partir d'une série de mesures effectuées par tranche depuis l'extérieur de cet objet .

http://fr.wikipedia.org/wiki/Tomographie

Méthodes analytiques de reconstruction

Reconstruction analytique

Projection à un angle θ

$$P_{\theta}(t) = \int_{(\theta,t) \, \text{line}} f(x, y) \, ds.$$

$$P_{\theta}(t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x \cos \theta + y \sin \theta - t) \ dx \ dy.$$

Objectif: Estimer une certaine distribution à partir de ses projections.

^{*} Principles of Computerized Tomographic Imaging

Théorème de la coupe centrale

La Transformée de Fourier unidimensionnelle d'une projection paralléle d'une image f(x,y) pris à un angle Θ donné est égale à la transformée bidimensionnelle F(u,v) faisant un angle Θ avec l'axe u.

^{*} Principles of Computerized Tomographic Imaging

Théorème de la coupe centrale

TF 2D image

$$F(u, v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j2\pi(ux+vy)} dx dy.$$

$$F(u, 0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j2\pi ux} dx dy$$

$$F(u, 0) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(x, y) \ dy \right] e^{-j2\pi ux} \ dx.$$

$$P_{\theta=0}(x) = \int_{-\infty}^{\infty} f(x, y) \ dy.$$

$$F(u, 0) = \int_{-\infty}^{\infty} P_{\theta=0}(x) e^{-j2\pi ux} dx.$$

$$F(u, 0) = S_{\theta=0}(u).$$

$$S_{\theta}(w) = \int_{-\infty}^{\infty} P_{\theta}(t) e^{-j2\pi wt} dt.$$

 TF^{-1} de F(u,v)

$$f(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j2\pi(ux+vy)} du dv.$$

$$u = w \cos \theta$$

$$v = w \sin \theta$$

$$f(x, y) = \int_0^{2\pi} \int_0^{\infty} F(w, \theta) e^{j2\pi w(x\cos\theta + y\sin\theta)} w \ dw \ d\theta.$$

$$t = x \cos \theta + y \sin \theta$$
.

$$f(x, y) = \int_0^{\pi} \left[\int_{-\infty}^{\infty} F(w, \theta) |w| e^{j2\pi wt} dw \right] d\theta.$$

$$f(x, y) = \int_0^{\pi} \left[\int_{-\infty}^{\infty} S_{\theta}(w) |w| e^{j2\pi wt} dw \right] d\theta.$$

TF 1D projection

^{*} Principles of Computerized Tomographic Imaging

Théorème de la coupe centrale

$$S_{\theta}(w) = F(w, \theta) = F(w \cos \theta, w \sin \theta).$$

Illustration de l'espace des fréquences

- Les faibles fréquences donnent plus d'informations
- Les hautes fréquences préservent surtout les contours Cours in2p3, 12/2012, Aussois

Reconstruction 3D Méthodes itératives de reconstruction

Reconstruction d'images (Fully 3D)

Formulation discrète du problème de reconstruction : $p = R \times f$

R(i,j): Probabilité pour qu'un photon émis au voxel i soit détecté au pixel j

- 1. Reconstruction simultanée du volume entier
- 2. Prise en compte des phénomènes physiques 3D : diffusion et réponse du détecteur

La matrice R est un élément clé de la reconstruction 3D

Une fois R est calculée, la résolution de l'équation : $p = R \times f$ se fait par méthodes itératives: ART, MLEM, OSEM, GC...

ART: Algebraic reconstruction technique

$$\sum_{j=1}^{N} w_{ij} f_j = p_i, \qquad i = 1, 2, \cdots, M$$

Système d'équations linéaires

$$w_{11}f_1 + w_{12}f_2 + w_{13}f_3 + \cdots + w_{1N}f_N = p_1$$

$$w_{21}f_1 + w_{22}f_2 + \cdots + w_{2N}f_N = p_2$$

$$\vdots$$

$$w_{M1}f_1 + w_{M2}f_2 + \cdots + w_{MN}f_N = p_M$$

$$\vec{f}^{(i)} = \vec{f}^{(i-1)} - \frac{(\vec{f}^{(i-1)} \cdot \vec{w}_i - p_i)}{\vec{w}_i \cdot \vec{w}_i} \vec{w}_i$$

^{*} Principles of Computerized Tomographic Imaging

MLEM: Maximum Likelihood Expectation Maximization

Besoin d'un outil pour estimer la matrice système R ...

J'ai besoin de savoir comment se propage les photons depuis le patient vers le détecteur:

- La composition anatomique du patient.
- Un outil qui me permet de modéliser les interactions des photons dans le patient et dans le détecteur: simulations Monte Carlo (Geant4, Gate).

Apport de la TomoDensitoMétrie en TEMP

Examen Tomodensitométrique

Données anatomiques

Unités Hounsfield (HU)

Exploitation des données anatomiques

$$H = \frac{\mu - \mu_{eau}}{\mu_{eau}} \times 1000$$

Coupe voxellisée

Monte Carlo(MC) simulations

Simulations des interactions particules/matière

Modélisation non-déterminisite des processus physiques à l'échelle subatomique

Atomic properties : Z , A, density...
Geometry description

Point fort: l'histoire de toutes les particules peut être enregistrée (condition initiales, interactions, position d'interactions...)

Applications en Imagerie médicale?

Objective des simulations Monte Carlo

Modéliser les processus depuis l'injection de molécule radiolabellisée jusqu'à la formation e l'image

Intérêt?

- ☐ <u>Instrumentation et algorithmie</u>
- Développements de détecteurs
- ◆ Développement des techniques et de méthode de correction des phénomènes dégradant la qualité de l'image ainsi que d'algorithmes de reconstruction

■ Biologique

- Modélisation de la biodistribution des radio-pharmaceutiques
- Evaluation des variations des signaux induits par des effets physiologiques

Illustration avec Gate d'applications en imagerie

BLOCK /gate/module/daughters/name block /gate/module/daughters/insert box

A complete contragtalph

CARYESTEALT BLOCK
/gliecks/block/block/block/states/block/block/states/block/block/states/blo

REPEAT CRYSTAL

/gate/crystal/repeaters/insert cubicArray

/gate/crystal/cubicArray/

setRepeatNumberX 1

/gate/crystal/cubicArray/

setRepeatNumberY 8

/gate/crystal/cubicArray/

Description de fantômes (objets test) et de géométrie

☐ Geometrical description

□ <u>Voxelized description</u>

Aperçu de modèles TEMP & TEP simulés sous Gate

PET & SPECT systems

18 commercial cameras 4 prototype cameras

Siemens - ECAT EXACT HR+

Simulated Validated Published

GE - Advance

Siemens - HRRT

Philips - Allegro

List of publications on the GATE web site

Modélisation Monte Carlo de la matrice R

Application au micro TEMP

Cours in2p3, 12/2012, Aussois

Accélération des simulations MC: Grille de calcul

Ressources de calcul

• Grille de calcul locale

Calcul

• 128 bi quad-core Xeon L5420.

Stockage

- Une machine de stockage de 18To bruts (24 disques de 750Go)
- 6 machines de stockage de 46To bruts (46 disques de 1000Go)
- 10⁴ simulations Geant4: activation de tous les processus physiques
- 128 projections suivant 360°
- 10⁶ photons / projection
- Distribution uniforme des photons dans le champs de vue du µSPECT
- Durée totale des simulations = 120 heures
- Application d' une technique de réduction de variance pour augmenter
 l'efficacité de détection de trois ordres de grandeur
- Taille de matrice de projection ~7 GBytes

1,28 x 10¹² photons émis

Procédure de lancement sur la grille des simulations MC

La vie d'un job (tache de calcul) sur la grille

De retour: Reconstruction en µTEMP, résolution spatiale

Evaluation de la résolution spatiale

Fantôme type Derenzo

1.4

42x42x10 Pixel: 1 mm Taille matrice :0,8 Go

MLEM (150 iterations)

84x84x20 Pixel: 0,5 mm Taille matrice : 2,4 Go

126x126x30 Pixel: 0,33 mm Taille matrice : 3,2 Go

166 MBq ^{99m}TcO₄⁻ 15s / projection 128 projections/360°

Distinction des inserts de 1mm de diamètre

Uniformité dans le champ de vue

Evaluation quantitative:

Quantification 0,8 MBq/µl/insert

RAR : Restoration of Activity Ratio Cours in 2p3, 12/2012, Ausso (restauration de contraste) 55

Etude preclinique

Objectif: voir la fixation in-vivo du pertechnetate 99mTcO₄-

Injection Intraperitoneal of ^{99m}TcO₄-0,48 mCi 10s/projection 128 projections/360° 14 bed positions

Coupe coronale

Coupe axiale

Fixation du pertechnetate dans :

- Glandes salivaires
- Glandes thyroidiennes
- Suc Gastrique

Localisation spatiale par fusion d'images µTEMP/µTDM

Visualisation 3D des glandes thyroïdiennes, des glandes salivaires